1996
DOI: 10.1109/2.485891
|View full text |Cite
|
Sign up to set email alerts
|

Artificial neural networks: a tutorial

Abstract: Numerous e orts have been made in developing \intelligent" programs based on the Von Neumann's centralized architecture. However, these e orts have not been very successful in building general-purpose intelligent systems. Inspired by biological neural networks, researchers in a number of scienti c disciplines are designing arti cial neural networks (ANNs) to solve a variety of problems in decision making, optimization, prediction, and control. Arti cial neural networks can be viewed as parallel and distributed… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
1,088
0
52

Year Published

1998
1998
2016
2016

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 3,080 publications
(1,263 citation statements)
references
References 11 publications
2
1,088
0
52
Order By: Relevance
“…Afterward by use of achieved OS and MF, operation of the network was tested. 15 samples data (data of samples [16][17][18][19][20][21][22][23][24][25][26][27][28][29][30] were used from the total of 30, as data sets to train network, while in the network testing, 15 different ones (data of samples 1-15) which were not used during training are used as network testing. Since the whole experimental results did not consist in the training.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Afterward by use of achieved OS and MF, operation of the network was tested. 15 samples data (data of samples [16][17][18][19][20][21][22][23][24][25][26][27][28][29][30] were used from the total of 30, as data sets to train network, while in the network testing, 15 different ones (data of samples 1-15) which were not used during training are used as network testing. Since the whole experimental results did not consist in the training.…”
Section: Resultsmentioning
confidence: 99%
“…Functions of g (1),…,g(6) represent output parameters. There exist multifarious parameters in neural network implementation whose manipulation brings about a change in the performance, speed and accuracy of the network [18].…”
Section: Artificial Neural Networkmentioning
confidence: 99%
“…As redes neurais tiveram um primeiro momento de destaque na década de 1940 e é baseado no estudo biológico da célula nervosa (neurônio) como apresentado na Figura 1 (HOPFIELD; TANK, 1986;JAIN;MAO;MOHIUDDIN, 1996). Basicamente o neurônio tem um núcleo que carrega informações e sinapses que fazem a conexão com outros neurônios permitindo que dendritos e axônios troquem sinais.…”
Section: Redes Neuraisunclassified
“…Basicamente o neurônio tem um núcleo que carrega informações e sinapses que fazem a conexão com outros neurônios permitindo que dendritos e axônios troquem sinais. (1996) Existem basicamente dois tipos de redes neurais (JAIN; MAO; MOHIUDDIN, 1996;LIPPMANN, 1987;YAO, 1999 Cada sinapse é representada pelo par (origem, destino) e a cada par é atribuído um peso que define o grau de influência que aquela sinapse tem na saída do neurônio destino, como apresentado pela equação (1). Uma função de ativação, definida pela equação (2), define se o neurônio é ou não relevante para a resposta do sistema.…”
Section: Redes Neuraisunclassified
See 1 more Smart Citation