Cell formation deals with grouping of machines and parts in manufacturing systems according to their compatibility. Manufacturing processes are surrounded with an abundance of complex constraints which should be considered carefully and represented clearly for obtaining high efficiency and productivity. Constraint programming is a new approach to combinatorial optimization and provides a rich language to represent complex constraints easily. However, the cell formation problems are well suited to be solved by constraint programming approach since the problem has many constraints such as part-machine requirements, availabilities in the system in terms of capacity, machine and worker abilities. In this study, the cell formation problem is modeled using machine, part processing and worker flexibilities via resource element–based representation. Resource elements define the processing requirements of parts and processing capabilities of machines and workers, which are resource-independent capability units. A total of 12 case problems are generated, and different search phases of constraint programming are defined for the solution procedure. The cell formation problem is modeled in both constraint programming and integer programming, and a comparative analysis of constraint programming and integer programming model solutions is done. The results indicate that both the models are effective and efficient in the solution of the cell formation problem.