The safety of engineering structures can be significantly compromised by cracks resulting from manufacturing procedures or prior loading, potentially leading to severe and catastrophic industrial accidents. Therefore, it is crucial to accurately and quantitatively characterize cracks in such structures. One common technique for detecting defects in metallic structures is eddy current testing (ECT). This paper proposes a method for the reliable estimation of crack shape and dimensions in conductive materials using the principles of ECT combined with a machine learning algorithm. First, numerical simulations are used to examine the relationship between the detection signature and the crack length and depth. Then, an artificial neural network based on a machine learning technique is employed to inversely characterize the cracks. The predicted results demonstrate that the crack length, depth, and shape can be accurately determined by the proposed algorithm. These findings, obtained using various specimens with known cracks, validate the applicability of the proposed approach for crack characterization.