1998
DOI: 10.1109/72.712178
|View full text |Cite
|
Sign up to set email alerts
|

Artificial neural networks for solving ordinary and partial differential equations

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

8
1,220
0
19

Year Published

2003
2003
2023
2023

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 1,978 publications
(1,370 citation statements)
references
References 10 publications
8
1,220
0
19
Order By: Relevance
“…As metodologias descritas neste artigo seguem as propostas por Lagaris et al (1998Lagaris et al ( , 2000, estendidas para modelos com condições de contorno mistas e pelo uso do método da penalidade para converter o problema de otimização original de restrito para irrestrito no treinamento das redes MLP. Os resultados são compatíveis com aqueles apresentados em Luize e Biscaia (1991), que foram obtidos com técnicas numéricas já consagradas, como elementos finitos e colocação ortogonal.…”
Section: Introductionunclassified
See 1 more Smart Citation
“…As metodologias descritas neste artigo seguem as propostas por Lagaris et al (1998Lagaris et al ( , 2000, estendidas para modelos com condições de contorno mistas e pelo uso do método da penalidade para converter o problema de otimização original de restrito para irrestrito no treinamento das redes MLP. Os resultados são compatíveis com aqueles apresentados em Luize e Biscaia (1991), que foram obtidos com técnicas numéricas já consagradas, como elementos finitos e colocação ortogonal.…”
Section: Introductionunclassified
“…The interpolation capabilities of multilayer perceptron networks (MLP) were used to solve a system of ordinary differential equations that models an axial dispersed non-adiabatic fixed bed reactor. The methodologies described in this paper follow the first ones proposed by Lagaris et al (1998Lagaris et al ( , 2000, but enlarge them to differential models with mix boundary conditions and by the use of the penalty method to convert the original constrained to unconstrained optimization problem in training the MLP networks. The results are in agreement on those in Luize e Biscaia (1991), which were obtained by well-established numerical techniques as finite element and orthogonal collocation methods.…”
mentioning
confidence: 99%
“…Then, another approach by Meade & Fernandez [25,26] was proposed for both linear and non-linear differential equations using Splines and feed forward neural network. Artificial neural networks based on Broyden-Fletcher-Goldfarb-Shanno (BF GS) optimization technique for solving ordinary and partial differential equations have been excellently presented by Lagaris et al [27]. Furthermore, Lagaris et al [28] investigated neural network methods for boundary value problems with irregular boundaries.…”
Section: Literature Reviewmentioning
confidence: 99%
“…For this reason, ANNs are popular in applications such as image identification [19] and speech recognition [20], as a substitute for complex rule-based algorithms which are often difficult to program. ANNs have also been used to solve certain classes of ordinary and partial differential equations [21,22,23].…”
Section: Introductionmentioning
confidence: 99%