This work presents multiple methods of creating high aspect ratio fluidic soft actuators that can be formed individually or in large arrays via dip coating. Within this methodology, four strategies are provided to mechanically program the motion of these actuators, including the use of fiber inclusions, gravity, surface tension, and electric fields. The modular nature of this dip coating fabrication technique is inexpensive, easy to modify, and scalable. These techniques are used to demonstrate the fabrication of soft actuators with aspect ratios up to 200:1 and integrated arrays of up to 256 actuators. Furthermore, these methods have the potential to achieve higher aspect ratios and larger array sizes. Operating pressure, curvature, and curling strength tests reveal the design space in which fabrication parameters can be selected to tune the input and output parameters of soft bending actuators. An individual bending actuator made with these methods weighs between 0.15 and 0.5 g, can hold up to 2 N, and can be designed to work in groups to increase curling strength with distributed contact forces. Arrays of these actuators may be useful in atypical grasping and manipulation tasks, fluid manipulation, and locomotion.