Monitoring bodily pressure could provide valuable medical information for both doctors and patients. Long-term implantation of in vivo sensors is highly desirable in situations where perception reconstruction is needed. In particular, for fecal incontinence, artificial anal sphincters without perceptions could not remind patients when to defecate and even cause ischemic tissue necrosis due to uncontrolled clamping pressure. To address these issues, a novel self-packaging strain gauge sensor system is designed for in vivo perception reconstruction. In addition, long short-term memory (LSTM) networks, which show excellent performance in processing time series-related features and fitting properties, are used in this article to improve the prediction accuracy of the perception model. The proposed system has been tested and compared with the traditional linear regression (LR) approach using data from in vitro experiments. The results show that the Root-Mean-Square Error (RMSE) is reduced by more than 69%, which demonstrates that the prediction accuracy of the proposed LSTM model is higher than that of the LR model to reach a more accurate prediction of the amount of intestinal content. Furthermore, outcomes of in vivo experiments show that the robustness of the novel sensor system based on long short-term memory networks is verified through experiments with limited data.