Aryl fluorosulfates have emerged as versatile SuFExable substrates, harnessing the reactivity of the S−F bond. In this study, we unveil their alternative synthetic utility in nickel-catalyzed borylation via C−O bond activation. This method highlights mild reaction conditions, a broad substrate scope, and moderate functional group tolerance, rendering it a practical and appealing approach for synthesizing a diverse array of aryl boronate esters. Furthermore, computational analysis sheds light on the reaction pathways, uncovering the participation of LNi(0) and LNi(II)ArX species. This insight is supported by the 31 P NMR reaction monitoring along with isolation and single-crystal X-ray structural elucidation of well-defined arylnickel(II) intermediates obtained from the oxidative addition of aryl fluorosulfates. A comprehensive investigation, merging experimental and computational approaches, deepens our understanding of the alternative reactivity of SuFExable substrates.