Compounds of the type aryl--M--X, with M=Ca, Sr, Ba and X as any kind of ligand (such as halide, phosphanide, amide, aryl), are presented. The low reactivity of the heavy alkaline earth metals calcium, strontium, and barium enforces an activation prior to use for the direct synthesis. The insertion of these metals into C--I bonds of aryl iodides (direct synthesis) yields aryl metal iodides and has to be performed at low temperatures and in THF. Aryl alkaline-earth-metal compounds show some characteristics: 1) the ease of ether cleavage enforces low reaction temperatures, 2) for Sr and Ba the Schlenk equilibrium is shifted towards homoleptic MI2 and MPh2, 3) high solubility of diaryl alkaline-earth-metal derivatives in THF even at low temperatures initiated quantum chemical investigations on the aggregation behavior, and 4) a strong low field shift of the 13C resonances of the ipso carbon atoms in NMR spectra was observed. First results from quantum chemical calculations on diaryl dicalcium(I) suggest a long Ca--Ca bond with a considerable Ca--Ca bond dissociation energy. Initial results on a selection of applications such as metallation, metathesis, and addition reactions of aryl calcium compounds are presented as well.