Alignment of latitude and longitude for all pixels is important for geo-stationary meteorological satellite (GSMS) images. To align landmarks and non-landmarks in the GSMS images, we propose a geometry-based global alignment method. Firstly, the Global Self-consistent, Hierarchical, High-resolution Geography (GSHHG) database and GSMS images are expressed as feature maps by geometric coding. According to the geometric and gradient similarity of feature maps, initial feature matching is obtained. Then, neighborhood spatial consistency based local geometric refinement algorithm is utilized to remove outliers. Since the earth is not a standard sphere, polynomial fitting models are used to describe the global relationship between latitude, longitude and coordinates for all pixels in the GSMS images. Finally, with registered landmarks and polynomial fitting models, the latitude and longitude of each pixel in the GSMS images can be calculated. Experimental results show that the proposed method globally align the GSMS images with high accuracy, recall and significantly low computation complexity.