Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Sleep apnea, hypertension, atherosclerosis, and obesity are features of metabolic syndrome associated with decreased restorative sleep and increased pain. These traits are relevant for anesthesiology because they confer increased risks of a negative anesthetic outcome. This study tested the one-tailed hypothesis that rats bred for low intrinsic aerobic capacity have enhanced nociception and disordered sleep. Methods Rats were from a breeding strategy that selected for low aerobic capacity runners (LCR) and high aerobic capacity runners (HCR). Four different phenotypes were quantified. Rats (n=12) underwent von Frey sensory testing, thermal nociceptive testing (n=12), electrographic recordings of sleep and wakefulness (n=16), and thermal nociceptive testing before and for six weeks after a unilateral chronic neuropathy of the sciatic nerve (n=14). Results Paw withdrawal latency to a thermal nociceptive stimulus was significantly (P<0.01) less in LCR than HCR rats. There were significant differences in sleep. LCR rats spent significantly (P<0.01) more time awake (18%) and less time in non-rapid eye movement sleep (−19%) than HCR rats. Non-rapid eye movement sleep episodes were of shorter duration (−34%) in LCR than HCR rats. Rapid eye movement sleep of LCR rats was significantly more fragmented than Rapid eye movement sleep of HCR rats. LCR rats required two weeks longer than HCR rats to recover from peripheral neuropathy. Conclusions Rodents with low aerobic capacity exhibit features homologous to human metabolic syndrome. This rodent model offers a novel tool for characterizing the mechanisms through which low aerobic function and obesity might confer increased risks for anesthesia.
Background Sleep apnea, hypertension, atherosclerosis, and obesity are features of metabolic syndrome associated with decreased restorative sleep and increased pain. These traits are relevant for anesthesiology because they confer increased risks of a negative anesthetic outcome. This study tested the one-tailed hypothesis that rats bred for low intrinsic aerobic capacity have enhanced nociception and disordered sleep. Methods Rats were from a breeding strategy that selected for low aerobic capacity runners (LCR) and high aerobic capacity runners (HCR). Four different phenotypes were quantified. Rats (n=12) underwent von Frey sensory testing, thermal nociceptive testing (n=12), electrographic recordings of sleep and wakefulness (n=16), and thermal nociceptive testing before and for six weeks after a unilateral chronic neuropathy of the sciatic nerve (n=14). Results Paw withdrawal latency to a thermal nociceptive stimulus was significantly (P<0.01) less in LCR than HCR rats. There were significant differences in sleep. LCR rats spent significantly (P<0.01) more time awake (18%) and less time in non-rapid eye movement sleep (−19%) than HCR rats. Non-rapid eye movement sleep episodes were of shorter duration (−34%) in LCR than HCR rats. Rapid eye movement sleep of LCR rats was significantly more fragmented than Rapid eye movement sleep of HCR rats. LCR rats required two weeks longer than HCR rats to recover from peripheral neuropathy. Conclusions Rodents with low aerobic capacity exhibit features homologous to human metabolic syndrome. This rodent model offers a novel tool for characterizing the mechanisms through which low aerobic function and obesity might confer increased risks for anesthesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.