Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Recent research about the role of free radical derivatives of oxygen and nitrogen in biological systems has highlighted the possibility that antioxidants, such as vitamin E, that prevent these processes in vitro may be capable of carrying out a similar function in living organisms in vivo. There is increasing evidence that free radical reactions are involved in the early stages, or sometimes later on, in the development of human diseases, and it is therefore of particular interest to inquire whether vitamin E and other antioxidants, which are found in the human diets, may be capable of lowering the incidence of these diseases. Put simply, the proposition is that by improving human diets by increasing the quantity in them of antioxidants, it might be possible to reduce the incidence of a number of degenerative diseases. Of particular significance to these considerations is the likely role of the primary fat-soluble dietary antioxidant vitamin E in the prevention of degenerative diseases such as arteriosclerosis, which is frequently the cause of consequent heart attacks or stroke, and prevention of certain forms of cancer, as well as several other diseases. Substantial evidence for this proposition now exists, and this review is an attempt to give a brief account of the present position. Two kinds of evidence exist; on the one hand there is very substantial basic science evidence which indicates an involvement of free radical events, and a preventive role for vitamin E, in the development of human disease processes. On the other hand, there is also a large body of human epidemiological evidence which suggests that incidence of these diseases is lowered in populations having a high level of antioxidants, such as vitamin E, in their diet, or who have taken steps to enhance their level of intake of the vitamin by taking dietary supplements. There is also some evidence which suggests that intervention with dietary supplements of vitamin E can result in a lowered risk of disease, in particular of cardiovascular disease, which is a major killer disease among the developed nations of the world. The intense interest in this subject recently has as its objective the possibility that, by making some simple alterations to dietary lifestyle, or by enhancing the intake of vitamin E by fortification of foods, or by dietary supplements, it may be possible to reduce substantially the risk of a large amount of common, highly disabling human disease. By this simple means, therefore it may be possible to improve substantially the quality of human life, in particular for people of advancing years.
Recent research about the role of free radical derivatives of oxygen and nitrogen in biological systems has highlighted the possibility that antioxidants, such as vitamin E, that prevent these processes in vitro may be capable of carrying out a similar function in living organisms in vivo. There is increasing evidence that free radical reactions are involved in the early stages, or sometimes later on, in the development of human diseases, and it is therefore of particular interest to inquire whether vitamin E and other antioxidants, which are found in the human diets, may be capable of lowering the incidence of these diseases. Put simply, the proposition is that by improving human diets by increasing the quantity in them of antioxidants, it might be possible to reduce the incidence of a number of degenerative diseases. Of particular significance to these considerations is the likely role of the primary fat-soluble dietary antioxidant vitamin E in the prevention of degenerative diseases such as arteriosclerosis, which is frequently the cause of consequent heart attacks or stroke, and prevention of certain forms of cancer, as well as several other diseases. Substantial evidence for this proposition now exists, and this review is an attempt to give a brief account of the present position. Two kinds of evidence exist; on the one hand there is very substantial basic science evidence which indicates an involvement of free radical events, and a preventive role for vitamin E, in the development of human disease processes. On the other hand, there is also a large body of human epidemiological evidence which suggests that incidence of these diseases is lowered in populations having a high level of antioxidants, such as vitamin E, in their diet, or who have taken steps to enhance their level of intake of the vitamin by taking dietary supplements. There is also some evidence which suggests that intervention with dietary supplements of vitamin E can result in a lowered risk of disease, in particular of cardiovascular disease, which is a major killer disease among the developed nations of the world. The intense interest in this subject recently has as its objective the possibility that, by making some simple alterations to dietary lifestyle, or by enhancing the intake of vitamin E by fortification of foods, or by dietary supplements, it may be possible to reduce substantially the risk of a large amount of common, highly disabling human disease. By this simple means, therefore it may be possible to improve substantially the quality of human life, in particular for people of advancing years.
In this report we studied DNA damage and lipid peroxidation in rat liver nuclei incubated with iron ions for up to 2 hrs in order to examine whether nuclear DNA damage was dependent on membrane lipid peroxidation. Lipid peroxidation was measured as thiobarbituric acid-reactive substances (TBARS) and DNA damage was measured as 8-OH-deoxyguanosine (8-OH-dG). We showed that Fe(II) induced nuclear lipid peroxidation dose-dependently but only the highest concentration (1.0 mM) used induced appreciable 8-OH-dG. Fe(III) up to 1 mM induced minimal lipid peroxidation and negligible amounts of 8-OH-dG. Ascorbic acid enhanced Fe(II)-induced lipid peroxidation at a ratio to Fe(II) of 1:1 but strongly inhibited peroxidation at ratios of 2.5:1 and 5:1. By contrast, ascorbate markedly enhanced DNA damage at all ratios tested and in a concentration-dependent manner. The nuclear DNA damage induced by 1 mM FeSO4/5 mM ascorbic acid was largely inhibited by iron chelators and by dimethylsulphoxide and mannitol, indicating the involvement of OH. Hydrogen peroxide and superoxide anions were also involved, as DNA damage was partially inhibited by catalase and, to a lesser extent, by superoxide dismutase. The chain-breaking antioxidants butylated hydroxytoluene and diphenylamine (an alkoxyl radical scavenger) did not inhibit DNA damage. Hence, this study demonstrated that ascorbic acid enhanced Fe(II)-induced DNA base modification which was not dependent on lipid peroxidation in rat liver nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.