Oral vaccination is the preferred route of immunization. However, the degradative condition of the gastrointestinal tract and the higher molecular size of peptides pose major challenges in developing an effective oral vaccination system. One of the most excellent methods used in the development of oral vaccine delivery system relies on the entrapment of the antigen in polymeric nanoparticles. In this work, trimethyl chitosan (TMC) nanoparticles were fabricated using ionic gelation teqnique by interaction hydroxypropyl methylcellulose phthalate (HPMCP), a pHsensitive polymer, with TMC and the utility of the particles in the oral delivery of hepatitis B surface antigen (HBsAg) was evaluated employing solutions that simulated gastric and intestinal conditions. The particle size, morphology, zeta potential, loading capacity, loading efficiency, in vitro release behavior, structure, and morphology of nanoparticles were evaluated, and the activity of the loaded antigen was assessed. Size of the optimized TMC/HPMCP nanoparticles and that of the antigen-loaded nanoparticles were 85 nm and 158 nm, respectively. Optimum loading capacity (76.75%) and loading efficiency (86.29%) were achieved at 300 mg/mL concentration of the antigen. SEM images revealed a spherical shape as well as a smooth and near-homogenous surface of nanoparticles. Results of the in vitro release studies showed that formulation with HPMCP improved the acid stability of the TMC nanoparticles as well as their capability to preserve the loaded HBsAg from gastric destruction. The antigen showed good activity both before and after loading. The results suggest that TMC/HPMCP nanoparticles could be used in the oral delivery of HBsAg vaccine.