2022
DOI: 10.31937/si.v13i1.2684
|View full text |Cite
|
Sign up to set email alerts
|

Aspect-Based Sentiment Analysis on Application Review using Convolutional Neural Network

Abstract: As an obligatory application during the COVID-19 pandemic by Indonesians, PeduliLindungi must have provided outstanding quality services to its users. However, as of December 2021, users’ sentiment toward the quality and service of the PeduliLindungi application was still low, with an application rating of 3.6 out of 5 on the Google Play Store. This study uses text mining techniques for the Aspect-Based Sentiment Analysis (ABSA) task in the PeduliLindungi application review, a sentiment analysis task based on … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 9 publications
0
1
0
Order By: Relevance
“…Metode klasifiikasi menggunakan algoritma Convolutional Neural Network (CNN). Hasil penelitian ini skor f1 sebesar 92,23 persen pada klasifikasi aspek dan 95,13 persen pada klasifikasi sentimen, hasilnya menunjukkan bahwa model CNN dapat bekerja dengan sangat baik [20].…”
Section: Pendahuluanunclassified
“…Metode klasifiikasi menggunakan algoritma Convolutional Neural Network (CNN). Hasil penelitian ini skor f1 sebesar 92,23 persen pada klasifikasi aspek dan 95,13 persen pada klasifikasi sentimen, hasilnya menunjukkan bahwa model CNN dapat bekerja dengan sangat baik [20].…”
Section: Pendahuluanunclassified
“…This value can be either positive or negative. This value can be used as a parameter in decision-making [9]- [11]. Sentiment analysis can be performed using several methods such as Random Forest, Support Vector Machine (SVM), and Naïve Bayes [5], [6], [12].…”
Section: Introductionmentioning
confidence: 99%
“…The results of the combination of Naïve Bayes and PSO methods get an accuracy of 93% and AUC of 97.7%. Research [13] used the Convolutional Neural Network (CNN) method for sentiment analysis of PeduliLindungi application user reviews based on aspects of Visual Experience, Scan, Vaccine Certificate, eHac, Covid-19 Test, Login, Performance, and Security. The data used were 2320 instances, and the results of his research obtained an f1 score of 95.13%.…”
Section: Introductionmentioning
confidence: 99%