Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Data mining and natural language processing researchers have been working on sentiment analysis for the past decade. Using deep neural networks (DNNs) for sentiment analysis has recently shown promising results. A technique of studying people’s attitudes through emotional sentiment analysis of data generated from various sources such as Twitter, social media reviews, etc. and classifying emotions based on the given data is related to text data generation. Therefore, the proposed study proposes a well-known deep learning technique for facet-based emotional mood classification using text data that can handle a large amount of content. Text data pre-processing uses stemming, segmentation, tokenization, case folding, and removal of stop words, nulls, and special characters. After data pre-processing, three word embedding approaches such as Assimilated N-gram Approach (ANA), Boosted Term Frequency Inverse Document Frequency (BT-IDF) and Enhanced Two-Way Encoder Representation from Transformers (E-BERT) are used to extract relevant features. The extracted features from the three different approaches are concatenated using the Feature Fusion Approach (FFA). The optimal features are selected using the Intensified Hunger Games Search Optimization (I-HGSO) algorithm. Finally, aspect-based sentiment analysis is performed using the Senti-BILSTM (Deep Aspect-EMO SentiNet) autoencoder based on the Hybrid Emotional Aspect Capsule autoencoder. The experiment was built on the yelp reviews dataset, IDMB movie review dataset, Amazon reviews dataset and the Twitter sentiment dataset. A statistical evaluation and comparison of the experimental results are conducted with respect to the accuracy, precision, specificity, the f1-score, recall, and sensitivity. There is a 99.26% accuracy value in the Yelp reviews dataset, a 99.46% accuracy value in the IMDB movie reviews dataset, a 99.26% accuracy value in the Amazon reviews dataset and a 99.93% accuracy value in the Twitter sentiment dataset.
Data mining and natural language processing researchers have been working on sentiment analysis for the past decade. Using deep neural networks (DNNs) for sentiment analysis has recently shown promising results. A technique of studying people’s attitudes through emotional sentiment analysis of data generated from various sources such as Twitter, social media reviews, etc. and classifying emotions based on the given data is related to text data generation. Therefore, the proposed study proposes a well-known deep learning technique for facet-based emotional mood classification using text data that can handle a large amount of content. Text data pre-processing uses stemming, segmentation, tokenization, case folding, and removal of stop words, nulls, and special characters. After data pre-processing, three word embedding approaches such as Assimilated N-gram Approach (ANA), Boosted Term Frequency Inverse Document Frequency (BT-IDF) and Enhanced Two-Way Encoder Representation from Transformers (E-BERT) are used to extract relevant features. The extracted features from the three different approaches are concatenated using the Feature Fusion Approach (FFA). The optimal features are selected using the Intensified Hunger Games Search Optimization (I-HGSO) algorithm. Finally, aspect-based sentiment analysis is performed using the Senti-BILSTM (Deep Aspect-EMO SentiNet) autoencoder based on the Hybrid Emotional Aspect Capsule autoencoder. The experiment was built on the yelp reviews dataset, IDMB movie review dataset, Amazon reviews dataset and the Twitter sentiment dataset. A statistical evaluation and comparison of the experimental results are conducted with respect to the accuracy, precision, specificity, the f1-score, recall, and sensitivity. There is a 99.26% accuracy value in the Yelp reviews dataset, a 99.46% accuracy value in the IMDB movie reviews dataset, a 99.26% accuracy value in the Amazon reviews dataset and a 99.93% accuracy value in the Twitter sentiment dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.