2019
DOI: 10.15359/ru.33-1.7
|View full text |Cite
|
Sign up to set email alerts
|

Aspectos computacionales del método de diferencias finitas para la ecuación de calor dependiente del tiempo

Abstract: En este artículo se describe en detalle un algoritmo para la eficiente implementación computacional del método de diferencias finitas (MDF) en la ecuación de calor dependiente del tiempo, con condiciones de frontera de Dirichlet no homogéneas, en dos dimensiones. Para validar el método presentado aquí se utiliza el paquete computacional MATLAB®, sin embargo, los procesos se exponen independientes al lenguaje de programación. Finalmente se presentan resultados numéricos que validan el algoritmo propuesto.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
5
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(5 citation statements)
references
References 17 publications
(13 reference statements)
0
5
0
Order By: Relevance
“…The numerical solution of the heat equation is discussed in many textbooks. References [1][2][3][4][5][6][7][8] provide a more mathematical description of the development of finite difference methods. See Cooper [4] for a modern introduction to the theory of partial differential equations along with brief coverage of numerical methods [9,13,16] that takes a more applied approach and introduces implementation problems.…”
Section: Finite Difference Approximationsmentioning
confidence: 99%
See 4 more Smart Citations
“…The numerical solution of the heat equation is discussed in many textbooks. References [1][2][3][4][5][6][7][8] provide a more mathematical description of the development of finite difference methods. See Cooper [4] for a modern introduction to the theory of partial differential equations along with brief coverage of numerical methods [9,13,16] that takes a more applied approach and introduces implementation problems.…”
Section: Finite Difference Approximationsmentioning
confidence: 99%
“…The term on the right-hand side of Equation ( 6) is called the truncation of the finite difference approximation. It is the error that results from truncating the series in Equation (5). In general, ξ is not known and is determined from the simulation.…”
Section: Direct Finite Difference Of First Ordermentioning
confidence: 99%
See 3 more Smart Citations