Abstract. This paper presents the approach we developed for automatic multi-document summarization applied to short message contextualization, in particular to tweet contextualization. The proposed method is based on named entity recognition, part-of-speech weighting and sentence quality measuring. In contrast to previous research, we introduced an algorithm from smoothing from the local context. Our approach exploits topic-comment structure of a text. Moreover, we developed a graph-based algorithm for sentence reordering. The method has been evaluated at INEX/CLEF tweet contextualization track. We provide the evaluation results over the 4 years of the track. The method was also adapted to snippet retrieval and query expansion. The evaluation results indicate good performance of the approach.