Migraine is a complex, neurovascular disorder in which genetic and environmental factors interact. At present, frontline therapies in the acute treatment of migraine include the use of non-steroidal anti-inflammatory drugs and triptans. Evidence indicates that calcitonin gene-related peptide (CGRP) plays a fundamental role in the mechanism of migraine. CGRP is a strong vasodilatatory neuropeptide that is released from activated trigeminal sensory nerves. The development of CGRP antagonists has also been driven by the fact that triptans are vasoconstrictive and cannot be safely used in patients with cardiovascular risk factors. Olcegepant (BIBN4096) is the first CGRP antagonist for the treatment of migraine that has been tested in clinical trials, but because of its poor oral bioavailability, only the intravenous formulation has been tested. The first oral non-peptide CGRP antagonist, telcagepant, has been shown recently to be highly effective in the treatment of migraine attacks. This development can be considered as the most important pharmacological breakthrough for migraine treatment since the introduction of sumatriptan in the early 1990s. These results are also of importance, since they support an interesting pathophysiological hypothesis of migraine. The pipeline of future compounds for the treatment of acute migraine headaches include TPRV1 antagonists, prostaglandin E receptor 4 (EP(4)) receptor antagonists, serotonin 5HT1(F) receptor agonists and nitric oxide synthase inhibitors. The immediate future of a preventative treatment for migraine headaches is well represented by botulinum toxin type-A, glutamate NMDA receptor antagonists, gap-junction blocker tonabersat and an angiotensin type 1 blocker candesartan.