“…Previous research measuring bias in speech processing models largely studies differences in performance on specific speech tasks, for data sourced from people of differing social groups. Social group-based performance comparisons exist for Automated Speech Recognition (ASR) (Tatman, 2017;Tatman and Kasten, 2017;Koenecke et al, 2020;Feng et al, 2021;Liu et al, 2022b;Riviere et al, 2021), Speaker Verification or Speaker Identification (SID) (Hutiri and Ding, 2022;Fenu et al, 2021Fenu et al, , 2020Fenu and Marras, 2022;Chen et al, 2022b;Meng et al, 2022), as well as a number of other speech tasks (Meng et al, 2022;Hutiri et al, 2023). Differences in model performance based on the gender (Tatman, 2017;Tatman and Kasten, 2017;Chen et al, 2022b;Feng et al, 2021;Liu et al, 2022b;Hutiri and Ding, 2022;Fenu et al, 2020Fenu et al, , 2021Fenu and Marras, 2022;Riviere et al, 2021), dialect (Tatman, 2017;Tatman and Kasten, 2017), race (Koenecke et al, 2020;Tatman and Kasten, 2017;Chen et al, 2022b;Riviere et al, 2021), age (Fenu et al, 2020, city (Koenecke et al, 2020), nationality (Hutiri and Ding, 2022), and native language (Feng et al, 2021) of the speaker have been tested.…”