Proteases function at every level in host defense, from regulating vascular hemostasis and inflammation to mobilizing the "rapid responder" leukocytes of the immune system by regulating the activities of various chemoattractants. Recent studies implicate proteolysis in the activation of a ubiquitous plasma chemoattractant, chemerin, a ligand for the G-protein-coupled receptor CMKLR1 present on plasmacytoid dendritic cells and macrophages. To define the pathophysiologic triggers of chemerin activity, we evaluated the ability of serum-and inflammation-associated proteases to cleave chemerin and stimulate CMKLR1-mediated chemotaxis. We showed that serine proteases factor XIIa and plasmin of the coagulation and fibrinolytic cascades, elastase and cathepsin G released from activated neutrophil granules and mast cell tryptase are all potent activators of chemerin. Activation results from cleavage of the labile carboxyl terminus of the chemoattractant at any of several different sites. Activation of chemerin by the serine protease cascades that trigger rapid defenses in the body may direct CMKLR1-positive plasmacytoid dendritic cell and tissue macrophage recruitment to sterile sites of tissue damage, as well as trafficking to sites of infectious and allergic inflammation.A network of serine proteases regulates the primary response to injury and infection in the host. Serine proteases of the coagulation and fibrinolytic cascades mediate the homeostatic response to blood vessel injury. Kallikrein and factor XIIa process kininogens to generate bradykinin, a potent vasodilator that triggers increased vascular permeability during inflammation. Serine proteases termed convertases release multiple pathogen-neutralizing components of activated complement. Serine protease cascades also regulate the recruitment of phagocytic and antigen-presenting cells to sites of inflammation and tissue damage. The complement cascade, for example, releases active components C5a and C3a, potent attractants for many leukocytes, including neutrophils and monocytes (1, 2). Thus serine proteases are critical participants in rapid defense mechanisms in the body.We and others have recently identified chemerin as a potent chemoattractant for cells expressing the G-protein-linked receptor chemokine-like receptor 1 (CMKLR1), 5 also known as ChemR23 or DEZ (3-5). CMKLR1 is expressed in vitro by monocyte-derived macrophages and dendritic cells (3,5,6) and in vivo by circulating plasmacytoid dendritic cells (pDCs) (5) and tissue macrophages.6 pDCs are major producers of ␣-interferons and can differentiate into antigen-presenting cells capable of triggering T effector or suppressor responses (7). Tissue macrophages have a major role as phagocytes but, similar to pDCs, are also implicated in bridging innate and adaptive immune responses and in regulating immunity in sterile versus infectious tissue injury (8). Importantly, chemerin is widely expressed and circulates in human plasma in an inactive state (5). Active forms of chemerin have been isolated from hu...