We describe the design and analysis of an androgynous fastener for autonomous robotic assembly of high performance structures. The design of these fasteners aims to prioritize ease of assembly through simple actuation with large driver positioning tolerance requirements, while producing a reversible mechanical connection with high strength and stiffness per mass. This can be applied to high strength to weight ratio structural systems, such as discrete building block based systems that offer reconfigurability, scalability, and system lifecycle efficiency. Such periodic structures are suitable for navigation and manipulation by relatively small mobile robots. The integration of fasteners, which are lightweight and can be robotically installed, into a high performance robotically managed structural system is of interest to reduce launch energy requirements, enable higher mission adaptivity, and decrease system life-cycle costs.