We associate to every G-bornological coarse space X and every left-exact ∞-category with G-action a left-exact infinity-category of equivariant X-controlled objects. Postcomposing with algebraic K-theory leads to new equivariant coarse homology theories. This allows us to apply the injectivity results for assembly maps by Bunke, Engel, Kasprowski and Winges to the algebraic K-theory of left-exact ∞-categories.
ContentsC 3.1. Coarse invariance 3.2. Flasques 3.3. u-continuity 3.4. Subspace inclusions 3.5. Excision 3.6. Strong additivity 4. Further constructions 4.1. Forcing continuity 4.2. Colimits 4.3. V G,c and V c G 4.4. Transfers 5. Calculations 6. Equivariant coarse homology theories 6.1. Basic definitions 6.2. Homological functors 6.3. CP-functors Date: November 11, 2019. 1 2 U. BUNKE, D.-C. CISINSKI, D. KASPROWSKI, AND C. WINGES 6.4. Algebraic K-theory 97 6.5. Split injectivity results 98 7. ∞-category background 101 7.1. Left-exact ∞-categories 101 7.2. The calculus of fractions formula 112 7.3. Labellings and localisation 114 7.4. Stabilisation and cofibres 116 7.5. Excisive squares in Cat Lex ∞, * 119 7.6. The universal property of the bounded derived category 121 7.7. A-theory as a GOrb-spectrum 131 References 134