Spatiotemporal specificity of cAMP action is best explained by targeting protein kinase A (PKA) to its substrates by A-kinase-anchoring proteins (AKAPs). At synapses in the brain, AKAP79/150 incorporates PKA and other regulatory enzymes into signal transduction networks that include -adrenergic receptors, ␣-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA), and N-methyl-D-aspartic acid receptors. We previously showed that AKAP79/150 clusters PKA with type 5 adenylyl cyclase (AC5) to assemble a negative feedback loop in which the anchored kinase phosphorylates AC5 to dynamically suppress cAMP synthesis. We now show that AKAP79 can associate with multiple AC isoforms. The N-terminal regions of AC5, -6, and -9 mediate this protein-protein interaction. Localized activation of PKA 2 triggers a plethora of intracellular signaling processes (1). Precise control of these phosphorylation events is often achieved by restricted activation of PKA in discrete microenvironments. AKAPs participate in this process by tethering the kinase close to preferred substrates. AKAPs now represent a family of 43 diverse but functionally related proteins that bind the regulatory subunit dimer of the PKA holoenzyme (2).AKAPs have been identified in a range of species, tissues, and cellular compartments. The AKAP79/150 group of anchoring proteins is perhaps the best understood member of this class of signal-organizing proteins. AKAP79/150 consists of three orthologs: bovine AKAP75, human AKAP79, and murine AKAP150. Although originally identified in the postsynaptic densities of neurons, this group of anchoring proteins is also expressed in a variety of other tissues. In addition to binding PKA, AKAP79 has the ability to bind protein phosphatase 2B (3) and protein kinase C (PKC) (4, 5). By organizing these signal transduction and signal termination enzymes in the same location, AKAP79 provides a platform to facilitate the bidirectional control of cAMP-and calcium-mediated signaling events.Although anchoring of PKA with its substrates provides an efficient mechanism for the spatial regulation necessary for selectivity of cAMP signaling, it was not clear how local pools of cAMP are managed. We have shown that AC isoforms can specifically interact with three different AKAP complexes, AKAP79, Yotiao, and mAKAP, to regulate events downstream of cAMP production (6 -8). We have also demonstrated that anchoring of AC5 to an AKAP79/150 complex provides negative feedback on AC5 via PKA phosphorylation of AC5 within the complex (6).Although characterization of the AKAP79-AC5 interaction has shed some light on the advantages gained by localizing different components of cAMP signaling pathways, several key issues remain unresolved. First of all, do other AC isoforms interact with AKAP79 or other anchoring proteins? Secondly, are AC isoforms recruited into larger signaling networks via their protein-protein interactions with AKAP79? AKAP79/150 has been shown to form a multiprotein signaling complex with AMPA and NMDA receptors (9 -11), adhesion mol...