2021
DOI: 10.1128/mra.01439-20
|View full text |Cite
|
Sign up to set email alerts
|

Assembly of Bacterial Genome Sequences from Metagenomes of Spacecraft Assembly Cleanrooms

Abstract: Characterizing the microbiome of spacecraft assembly cleanrooms is important for planetary protection. We report two bacterial metagenome-assembled genomes (MAGs) reconstructed from metagenomes produced from cleanroom samples from the Kennedy Space Center’s Payload Hazardous Servicing Facility (KSC-PHSF) during the handling of the Phoenix spacecraft. Characterization of these MAGs will enable identification of the strategies underpinning their survival.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 20 publications
0
1
0
Order By: Relevance
“…Although the extensive cleaning processes limit the number of microbes capable of withstand such clean room conditions, hardy spore-forming microorganisms like Amycolatopsis methanolica (also a methylotrophic bacteria) [58], Actinoplanes friuliensis, and Geodermatophilus obscurus, demonstrate the capacity of certain taxa to survive sterilization processes. However, it is important to identify and assembly microorganisms that may be actively growing [59]. To measure the microbial growth rate we used Growth Rate Index (GRiD), a bioinformatic tool able to work with low-quality genome assemblies even at 0.05% relative abundances of 100 bp × 10 million reads.…”
Section: Discussionmentioning
confidence: 99%
“…Although the extensive cleaning processes limit the number of microbes capable of withstand such clean room conditions, hardy spore-forming microorganisms like Amycolatopsis methanolica (also a methylotrophic bacteria) [58], Actinoplanes friuliensis, and Geodermatophilus obscurus, demonstrate the capacity of certain taxa to survive sterilization processes. However, it is important to identify and assembly microorganisms that may be actively growing [59]. To measure the microbial growth rate we used Growth Rate Index (GRiD), a bioinformatic tool able to work with low-quality genome assemblies even at 0.05% relative abundances of 100 bp × 10 million reads.…”
Section: Discussionmentioning
confidence: 99%