Traits that enable species to persist in ecological environments are often maintained over time, a phenomenon known as niche conservatism. Here we argue that ecological niches function at levels above species, notably at the level of genus for mammals, and that niche conservatism is also evident above the species level. Using the proxy of geographic range size, we explore changes in the realized niche of North American mammalian genera and families across the major climatic transition represented by the last glacial-interglacial transition. We calculate the mean and variance of range size for extant mammalian genera and families, rank them by range size, and estimate the change in range size and rank during the late Pleistocene and late Holocene. We demonstrate that range size at the genus and family levels was surprisingly constant over this period despite range shifts and extinctions of species within the clades. We suggest that underlying controls on niche conservatism may be different at these higher taxonomic levels than at the species level. Niche conservatism at higher levels seems primarily controlled by intrinsic life history traits, whereas niche conservatism at the species level may reflect underlying environmental controls. These results highlight the critical importance of conserving the biodiversity of mammals at the genus level and of maintaining an adequate species pool within genera.climate change ͉ extinction ͉ geographic range size ͉ mammals ͉ Pleistocene T he distributions of mammals are labile over ecological time and have been impacted by human activities, including climatic warming over the past century (1-6). Although humans are altering the distribution of Earth's species in our lifetimes (7), we have little information about how extant species and higher taxa altered their distributions in the past. Here we examine the fossil record for variation in the distribution of mammalian ranges at the level of genus and families in response to climatic change over an evolutionary and ecological relevant time scale (tens of thousands of years). The goal is to understand whether niche conservatism is evident at taxonomic levels higher than species and, if so, what actually underlies the conservation of a niche through long time periods.Nearly all previous studies of niche conservatism have been at the level of species.