2015
DOI: 10.1007/s10661-015-4428-3
|View full text |Cite
|
Sign up to set email alerts
|

Assessing and monitoring the risk of desertification in Dobrogea, Romania, using Landsat data and decision tree classifier

Abstract: The risk of the desertification of a part of Romania is increasingly evident, constituting a serious problem for the environment and the society. This article attempts to assess and monitor the risk of desertification in Dobrogea using Landsat Thematic Mapper (TM) satellite images acquired in 1987, 1994, 2000, 2007 and 2011. In order to assess the risk of desertification, we used as indicators the Modified Soil Adjustment Vegetation Index 1 (MSAVI1), the Moving Standard Deviation Index (MSDI) and the albedo, i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
31
0
2

Year Published

2016
2016
2022
2022

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 29 publications
(33 citation statements)
references
References 28 publications
0
31
0
2
Order By: Relevance
“…Our finding agrees with previous works claiming that DT performance is acceptable for desertification assessment (Xu et al, ) and landslide susceptibility mapping (Yeon et al, ). More specifically, the C5 algorithm performs best in landslide susceptibility mapping (Braun et al, ), breast cancer survivability prediction (Delen et al, ), land cover classification (Pal & Mather, ; Vorovencii, ), and soil map production (Qi & Zhu, ) relative to other algorithms. This is partly because C5 adds a powerful boosting algorithm to improve CA by establishing the DT, which focuses on data that are wrongly classified.…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Our finding agrees with previous works claiming that DT performance is acceptable for desertification assessment (Xu et al, ) and landslide susceptibility mapping (Yeon et al, ). More specifically, the C5 algorithm performs best in landslide susceptibility mapping (Braun et al, ), breast cancer survivability prediction (Delen et al, ), land cover classification (Pal & Mather, ; Vorovencii, ), and soil map production (Qi & Zhu, ) relative to other algorithms. This is partly because C5 adds a powerful boosting algorithm to improve CA by establishing the DT, which focuses on data that are wrongly classified.…”
Section: Discussionmentioning
confidence: 99%
“…In the present study, the C5 algorithm (Quinlan, 1993(Quinlan, , 2001Wu et al, 2008) was used to derive DTs from training data, because it proved to be both fast and highly accurate (e.g., Braun et al, 2015;Delen et al, 2005;Pal & Mather, 2003;Qi & Zhu, 2003;Vorovencii, 2015;Wu et al, 2008) and allowed for viewing established rules. This makes it widely applicable in various areas.…”
Section: Selection Of Data Mining Algorithms and Experimental Framementioning
confidence: 99%
See 1 more Smart Citation
“…Os mapas do risco de degradação ambiental da região foram avaliados estatisticamente por matriz de confusão, pelas medidas da avaliação de precisão e coeficiente Kappa (qualidade dos mapas temáticos, Landis e Koch, 1977) através da amostragem de vários pontos (pixels aleatórios) em cada imagem para os diferentes graus do risco de degradação ambiental na região semiárida (Xu et al, 2009;Vorovencii, 2015;.…”
Section: Savi =unclassified
“…O estudo das mudanças de cobertura do solo torna-se viável quando avaliado em grandes áreas, assim, o sensoriamento remoto é uma ferramenta que através de um conjunto de técnicas junto a algoritmos permitem esse tipo de avaliação, além de um monitoramento espaço-temporal de áreas heterogêneas com alta precisão, avaliando principalmente a biomassa vegetal e o padrão de paisagem, assim como, as condições micrometeorológicas através de indicadores para detecção de mudanças na superfície. Existem diferentes aplicações disponíveis que permitem realizar previsões meteorológicas, mudanças climáticas e planejamento agroecológico, todos estes fatores essenciais para avaliar e monitorar o risco de degradação ambiental ao longo do tempo nas regiões semiáridas do Brasil (Xu et al, 2009;Bastiaanssen et al, 2010;Teixeira et al, 2014;Vorovencii, 2015;Zheng et al, 2016;.…”
Section: Introductionunclassified