As the demand for cybersecurity experts in the industry grows, we face a widening shortage of skilled professionals. This pressing concern has spurred extensive research within academia and national bodies, who are striving to bridge this skills gap through refined educational frameworks, including the integration of innovative information applications like remote laboratories and virtual classrooms. Despite these initiatives, current higher education models for cybersecurity, while effective in some areas, fail to provide a holistic solution to the root causes of the skills gap. Our study conducts a thorough examination of established cybersecurity educational frameworks, with the goal of identifying crucial learning outcomes that can mitigate the factors contributing to this skills gap. Furthermore, by analyzing six different educational models, for each one that can uniquely leverage technology like virtual classrooms and online platforms and is suited to various learning contexts, we categorize these contexts into four distinct categories. This categorization introduces a holistic dimension of context awareness enriched by digital learning tools into the process, enhancing the alignment with desired learning outcomes, a consideration sparsely addressed in the existing literature. This thorough analysis further strengthens the framework for guiding education providers in selecting models that most effectively align with their targeted learning outcomes and implies practical uses for technologically enhanced environments. This review presents a roadmap for educators and institutions, offering insights into relevant teaching models, including the opportunities for the utilization of remote laboratories and virtual classrooms, and their contextual applications, thereby aiding curriculum designers in making strategic decisions.