Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Many debris-covered glaciers are widely distributed on the Qinghai–Tibet Plateau. Glaciers are important freshwater resources and cause disasters such as glacier collapse and landslides. Therefore, it is of great significance to monitor the movement characteristics of large active glaciers and analyze the process of mass migration, which may cause serious threats and damage to roads and people living in surrounding areas. In this study, we chose a glacier with strong activity in Lulang County, Tibet, as the study area. The complete 4-year time series deformation of the glacier was estimated by using an improved small-baseline subset InSAR (SBAS-InSAR) technique based on the ascending and descending Sentinel-1 datasets. Then, the three-dimensional time series deformation field of the glacier was obtained by using the 3D decomposition technique. Furthermore, the three-dimensional movement of the glacier and its material migration process were analyzed. The results showed that the velocities of the Lulang glacier in horizontal and vertical directions were up to 8.0 m/year and 0.45 m/year, and these were basically consistent with the movement rate calculated from the historical optical images. Debris on both sides of the slope accumulated in the channel after slipping, and the material loss of the three provenances reached 6–9 × 103 m3/year, while the volume of the glacier also decreased by about 76 × 103 m3/year due to snow melting and evaporation. The correlation between the precipitation, temperature, and surface velocity suggests that glacier velocity has a clear association with them, and the activity of glaciers is linked to climate change. Therefore, in the context of global warming, the glacier movement speed will gradually increase with the annual increase in temperature, resulting in debris flow disasters in the future summer high-temperature period.
Many debris-covered glaciers are widely distributed on the Qinghai–Tibet Plateau. Glaciers are important freshwater resources and cause disasters such as glacier collapse and landslides. Therefore, it is of great significance to monitor the movement characteristics of large active glaciers and analyze the process of mass migration, which may cause serious threats and damage to roads and people living in surrounding areas. In this study, we chose a glacier with strong activity in Lulang County, Tibet, as the study area. The complete 4-year time series deformation of the glacier was estimated by using an improved small-baseline subset InSAR (SBAS-InSAR) technique based on the ascending and descending Sentinel-1 datasets. Then, the three-dimensional time series deformation field of the glacier was obtained by using the 3D decomposition technique. Furthermore, the three-dimensional movement of the glacier and its material migration process were analyzed. The results showed that the velocities of the Lulang glacier in horizontal and vertical directions were up to 8.0 m/year and 0.45 m/year, and these were basically consistent with the movement rate calculated from the historical optical images. Debris on both sides of the slope accumulated in the channel after slipping, and the material loss of the three provenances reached 6–9 × 103 m3/year, while the volume of the glacier also decreased by about 76 × 103 m3/year due to snow melting and evaporation. The correlation between the precipitation, temperature, and surface velocity suggests that glacier velocity has a clear association with them, and the activity of glaciers is linked to climate change. Therefore, in the context of global warming, the glacier movement speed will gradually increase with the annual increase in temperature, resulting in debris flow disasters in the future summer high-temperature period.
Ice avalanche (IA) has a strong concealment and sudden characteristics, which can cause severe disasters. The early identification of IA hidden danger is of great value for disaster prevention and mitigation. However, it is very difficult, and there is poor efficiency in identifying it by site investigation or manual remote sensing. So, an artificial intelligence method for the identification of IA hidden dangers using a deep learning model has been proposed, with the glacier area of the Yarlung Tsangpo River Gorge in Nyingchi selected for identification and validation. First, through engineering geological investigations, three key identification indices for IA hidden dangers are established, glacier source, slope angle, and cracks. Sentinel-2A satellite data, Google Earth, and ArcGIS are used to extract these indices and construct a feature dataset for the study and validation area. Next, key performance metrics, such as training accuracy, validation accuracy, test accuracy, and loss rates, are compared to assess the performance of the ResNet50 (Residual Neural Network 50) and VGG16 (Visual Geometry Group 16) models. The VGG16 model (96.09% training accuracy) is selected and optimized, using Early Stopping (ES) to prevent overfitting and L2 regularization techniques (L2) to add weight penalties, which constrained model complexity and enhanced simplicity and generalization, ultimately developing the ES-L2-VGG16 (Early Stopping—L2 Norm Regularization Techniques—Visual Geometry Group 16) model (98.61% training accuracy). Lastly, during the validation phase, the model is applied to the Yarlung Tsangpo River Gorge glacier area on the Tibetan Plateau (TP), identifying a total of 100 IA hidden danger areas, with average slopes ranging between 34° and 48°. The ES-L2-VGG16 model achieves an accuracy of 96% in identifying these hidden danger areas, ensuring the precise identification of IA dangers. This study offers a new intelligent technical method for identifying IA hidden danger, with clear advantages and promising application prospects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.