Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Large language models (LLMs) have gained immense attention and are being increasingly applied in various domains. However, this technological leap forward poses serious security and privacy concerns. This paper explores a novel approach to data stealing attacks by introducing an adaptive method to extract private training data from pre-trained LLMs via backdooring. Our method mainly focuses on the scenario of model customization and is conducted in two phases, including backdoor training and backdoor activation, which allow for the extraction of private information without prior knowledge of the model’s architecture or training data. During the model customization stage, attackers inject the backdoor into the pre-trained LLM by poisoning a small ratio of the training dataset. During the inference stage, attackers can extract private information from the third-party knowledge database by incorporating the pre-defined backdoor trigger. Our method leverages the customization process of LLMs, injecting a stealthy backdoor that can be triggered after deployment to retrieve private data. We demonstrate the effectiveness of our proposed attack through extensive experiments, achieving a notable attack success rate. Extensive experiments demonstrate the effectiveness of our stealing attack in popular LLM architectures, as well as stealthiness during normal inference.
Large language models (LLMs) have gained immense attention and are being increasingly applied in various domains. However, this technological leap forward poses serious security and privacy concerns. This paper explores a novel approach to data stealing attacks by introducing an adaptive method to extract private training data from pre-trained LLMs via backdooring. Our method mainly focuses on the scenario of model customization and is conducted in two phases, including backdoor training and backdoor activation, which allow for the extraction of private information without prior knowledge of the model’s architecture or training data. During the model customization stage, attackers inject the backdoor into the pre-trained LLM by poisoning a small ratio of the training dataset. During the inference stage, attackers can extract private information from the third-party knowledge database by incorporating the pre-defined backdoor trigger. Our method leverages the customization process of LLMs, injecting a stealthy backdoor that can be triggered after deployment to retrieve private data. We demonstrate the effectiveness of our proposed attack through extensive experiments, achieving a notable attack success rate. Extensive experiments demonstrate the effectiveness of our stealing attack in popular LLM architectures, as well as stealthiness during normal inference.
With the advancement of deep learning (DL) technology, DL-based intrusion detection models have emerged as a focal point of research within the domain of cybersecurity. This paper provides an overview of the datasets frequently utilized in the research. This article presents an overview of the widely utilized datasets in the research, establishing a basis for future investigation and analysis. The text subsequently summarizes the prevalent data preprocessing methods and feature engineering techniques utilized in intrusion detection. Following this, it provides a review of seven deep learning-based intrusion detection models, namely, deep autoencoders, deep belief networks, deep neural networks, convolutional neural networks, recurrent neural networks, generative adversarial networks, and transformers. Each model is examined from various dimensions, highlighting their unique architectures and applications within the context of cybersecurity. Furthermore, this paper broadens its scope to include intrusion detection techniques facilitated by the following two large-scale predictive models: the BERT series and the GPT series. These models, leveraging the power of transformers and attention mechanisms, have demonstrated remarkable capabilities in understanding and processing sequential data. In light of these findings, this paper concludes with a prospective outlook on future research directions. Four key areas have been identified for further research. By addressing these issues and advancing research in the aforementioned areas, this paper envisions a future in which DL-based intrusion detection systems are not only more accurate and efficient but also better aligned with the dynamic and evolving landscape of cybersecurity threats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.