The quest for predictions-and a reliance on the analytical methods that require them-can prove counter-productive and sometimes dangerous in a fast-changing world. • Robust Decision Making (RDM) is a set of concepts, processes, and enabling tools that use computation, not to make better predictions, but to yield better decisions under conditions of deep uncertainty. • RDM combines Decision Analysis, Assumption-Based Planning, scenarios, and Exploratory Modeling to stress test strategies over myriad plausible paths into the future, and then to identify policy-relevant scenarios and robust adaptive strategies. • RDM embeds analytic tools in a decision support process called "deliberation with analysis" that promotes learning and consensus-building among stakeholders. • The chapter demonstrates an RDM approach to identifying a robust mix of policy instruments-carbon taxes and technology subsidies-for reducing greenhouse gas emissions. The example also highlights RDM's approach to adaptive strategies, agent-based modeling, and complex systems. • Frontiers for RDM development include expanding the capabilities of multiobjective RDM (MORDM), more extensive evaluation of the impact and effectiveness of RDM-based decision support systems, and using RDM's ability to reflect multiple world views and ethical frameworks to help improve the way organizations use and communicate analytics for wicked problems.