Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objective: Investigate how different groups of depositors vary in their use of optional data curation features that provide support for FAIR research data in the Harvard Dataverse repository. Methods: A numerical score based upon the presence or absence of characteristics associated with the use of optional features was assigned to each of the 29,295 datasets deposited in Harvard Dataverse between 2007 and 2019. Statistical analyses were performed to investigate patterns of optional feature use amongst different groups of depositors and their relationship to other dataset characteristics. Results: Members of groups make greater use of Harvard Dataverse's optional features than individual researchers. Datasets that undergo a data curation review before submission to Harvard Dataverse, are associated with a publication, or contain restricted files also make greater use of optional features. Conclusions: Individual researchers might benefit from increased outreach and improved documentation about the benefits and use of optional features to improve their datasets' level of curation beyond the FAIR-informed support that the Harvard Dataverse repository provides by default. Platform designers, developers, and managers may also use the numerical scoring approach to explore how different user groups use optional application features.
Objective: Investigate how different groups of depositors vary in their use of optional data curation features that provide support for FAIR research data in the Harvard Dataverse repository. Methods: A numerical score based upon the presence or absence of characteristics associated with the use of optional features was assigned to each of the 29,295 datasets deposited in Harvard Dataverse between 2007 and 2019. Statistical analyses were performed to investigate patterns of optional feature use amongst different groups of depositors and their relationship to other dataset characteristics. Results: Members of groups make greater use of Harvard Dataverse's optional features than individual researchers. Datasets that undergo a data curation review before submission to Harvard Dataverse, are associated with a publication, or contain restricted files also make greater use of optional features. Conclusions: Individual researchers might benefit from increased outreach and improved documentation about the benefits and use of optional features to improve their datasets' level of curation beyond the FAIR-informed support that the Harvard Dataverse repository provides by default. Platform designers, developers, and managers may also use the numerical scoring approach to explore how different user groups use optional application features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.