Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
PurposeThis paper discusses the applicability of different occupational health risk assessment (OHRA) methods in assessing noise hazards during the production phase of assembled precast concrete (PC) components and makes targeted recommendations based on the assessment results from multiple perspectives to reduce noise hazards in this phase.Design/methodology/approachIn this paper, the noise levels of various plant operations are measured on-site and the actual working conditions of plant workers are investigated. Then, four distinct occupational health risk assessment (HRA) models are used to estimate the risk of noise hazards during the production of PC components. Finally, the results obtained from the various models are analyzed and discussed, and then the most appropriate method for assessing noise hazards at this stage is chosen accordingly.FindingsThe noise exposure levels of workers in the four processes of steel processing, concrete mixing, concrete vibrating and mold removal exceeded occupational exposure limits. Similarly, the risk associated with these four processes is relatively elevated. For risk assessment (RA) of noise hazards in the production phase of assembled PC components, both the Australian RA model and the occupational hazard risk index method can be used, with the latter being more applicable.Originality/valueThe assessment results acquired in this paper can serve as a reference for the government and other relevant agencies when determining inspection priorities. In addition, the measures and recommendations outlined in this paper serve as a guide for businesses and government agencies to strengthen the noise management in the production stage of PC components, thereby reducing the noise hazards in the production stage of assembled PC components.
PurposeThis paper discusses the applicability of different occupational health risk assessment (OHRA) methods in assessing noise hazards during the production phase of assembled precast concrete (PC) components and makes targeted recommendations based on the assessment results from multiple perspectives to reduce noise hazards in this phase.Design/methodology/approachIn this paper, the noise levels of various plant operations are measured on-site and the actual working conditions of plant workers are investigated. Then, four distinct occupational health risk assessment (HRA) models are used to estimate the risk of noise hazards during the production of PC components. Finally, the results obtained from the various models are analyzed and discussed, and then the most appropriate method for assessing noise hazards at this stage is chosen accordingly.FindingsThe noise exposure levels of workers in the four processes of steel processing, concrete mixing, concrete vibrating and mold removal exceeded occupational exposure limits. Similarly, the risk associated with these four processes is relatively elevated. For risk assessment (RA) of noise hazards in the production phase of assembled PC components, both the Australian RA model and the occupational hazard risk index method can be used, with the latter being more applicable.Originality/valueThe assessment results acquired in this paper can serve as a reference for the government and other relevant agencies when determining inspection priorities. In addition, the measures and recommendations outlined in this paper serve as a guide for businesses and government agencies to strengthen the noise management in the production stage of PC components, thereby reducing the noise hazards in the production stage of assembled PC components.
This study investigates the challenges and promotion strategies for adopting Prefabricated Buildings (PFBs) by construction companies in Botswana, using the Behavioral Reasoning Theory (BRT) as the guiding framework. The main research problem addressed is the limited uptake of PFBs within Botswana’s construction industry despite its potential environmental and efficiency benefits. The study aims to understand the reasons for adoption (RFAs) and the reasons against adoption (RAAs) among construction companies. By analyzing responses from 25 participants, the research finds that environmental sustainability, supportive government policies, internal environmental considerations, and time efficiency are key factors driving the adoption of PFB, reflecting a readiness among companies to embrace these technologies. However, significant barriers remain, including industry-specific challenges, technical complexities, transportation issues, and market-related concerns hindering wider adoption. These findings provide actionable insights for policymakers and construction stakeholders to formulate strategies to address these barriers and promote sustainable building practices.
The frequent occurrence of Public Health Emergencies of International Concern (PHEIC) has posed significant challenges to urban public health, economic, and social systems, exposing gaps in urban resilience. This study developed a dynamic urban resilience assessment framework against PHEIC based on the system dynamics method, integrating index analysis and the SEIR (susceptible–exposed–infectious–recovered) epidemiological model to investigate the interactions and dynamic evolution of urban subsystems in New York, Hong Kong, and Nanjing during the COVID-19 epidemic. The findings revealed significant differences in the response mechanisms and recovery capacities across subsystems. For example, the stringent lockdowns policy in New York curbed virus spread and heavily impacted economic activities; the “close to Dynamic zero of COVID-19” policy in Hong Kong demonstrated stronger resilience in balancing public health and economic recovery; the dynamic control measures in Nanjing China allowed for the rapid restoration of urban functions with minimal resilience fluctuations. Although strict control measures can effectively suppress disease spread, they can have profound economic and social impacts. More scientific strategies, such as those seen in Hong Kong and Nanjing, offer a more balanced approach to managing both epidemic control and urban function recovery, providing key insights for future PHEIC response strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.