2017
DOI: 10.1111/1752-1688.12611
|View full text |Cite
|
Sign up to set email alerts
|

Assessing Spatial Scale Effects on Hydrometric Network Design Using Entropy and Multi‐objective Methods

Abstract: In order to facilitate water resources decisions, it is important that accurate and informative hydrometric data are collected. Combining information theory with multi-objective optimization has led to methods of optimizing the information content provided by hydrometric networks; however, there is no available study on the effects of spatial scale and data limitation on these methods. Herein, a dual entropy multi-objective optimization (DEMO) and a transinformation (TI) analysis were done to recommend optimal… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 27 publications
0
4
0
1
Order By: Relevance
“…In this study, we compare the methods and recommendations already elaborated by similar studies carried out (e.g., ALFONSO et al 2010aALFONSO et al ,b, 2014LI et al, 2012;COULIBALY, 2010COULIBALY, , 2014COULIBALY, 2016COULIBALY, , 2017SAMUEL et al, 2013), applied to Rio das Velhas, in continuation of studies previously performed at the national level by Gontijo Junior and Koide (2012) and Pádua et al (2018a,b).…”
Section: Introductionmentioning
confidence: 95%
“…In this study, we compare the methods and recommendations already elaborated by similar studies carried out (e.g., ALFONSO et al 2010aALFONSO et al ,b, 2014LI et al, 2012;COULIBALY, 2010COULIBALY, , 2014COULIBALY, 2016COULIBALY, , 2017SAMUEL et al, 2013), applied to Rio das Velhas, in continuation of studies previously performed at the national level by Gontijo Junior and Koide (2012) and Pádua et al (2018a,b).…”
Section: Introductionmentioning
confidence: 95%
“…Оптимальні мережі, що використовують довжину даних 5, 10, 15 і 20 років, також показують, що немає суттєвих відмінностей у результатах від 10 років або довше, тоді як оптимальна мережа, яка використовує дані за п'ять років, явно відрізняється від інших. Автори [49] проаналізували ефекти масштабування, розглянувши дві досліджувані області. Зокрема, одна досліджувана територія є малим вододілом, який є частиною іншої досліджуваної території.…”
Section: формулювання мети статтіunclassified
“…The optimal networks using the data lengths of 5, 10, 15 and 20 years also show that there are no significant differences in the results from 10 years or longer while the optimal network using five years of data was evidently different from others. Werstuck and Coulibaly [56] analyzed scaling effects by considering two study areas. Specifically, one study area is a small watershed, which is a part of another study area.…”
Section: Streamflow and Water Level Networkmentioning
confidence: 99%