2012
DOI: 10.1111/j.1654-1103.2012.01402.x
|View full text |Cite
|
Sign up to set email alerts
|

Assessing species and community functional responses to environmental gradients: which multivariate methods?

Abstract: Abbreviations CWM = average trait expression across all species of a community, weighted by their abundance; RDA = redundancy analysis; CCA = canonical correspondence analysis; RLQ = a double inertia analysis of two arrays (R and Q) with a link expressed by a contingency table (L); mRegTree = multivariate regression tree analysis; sRegTree = univariate regression tree analysis; OMI = outlying mean index; GAM = general additive model; Cluster regression = a combination of cluster analyses and logistic regressio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
248
0
8

Year Published

2016
2016
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 268 publications
(256 citation statements)
references
References 66 publications
0
248
0
8
Order By: Relevance
“…Although a descriptive methodology may be simple to implement, the interpretation could be complex due the multivariate character of the functional traits matrix (10 dimensions in our study), and thus the significance of the relationships could not be evaluated. RLQ is a speciesbased method that considers single species response to an environmental gradient (Kleyer et al, 2012) and has the advantage of explicitly incorporating the three types of fundamental ecological data used in trait-environment relationship studies (i.e., a species functional trait matrix, an environmental matrix and a species co-occurrence matrix). These advantages make the approach taken here suitable for evaluating trait-environment relationships (Vallet et al, 2010;Kleyer et al, 2012;Pease et al, 2012;Keck et al, 2014).…”
Section: Discussionmentioning
confidence: 99%
“…Although a descriptive methodology may be simple to implement, the interpretation could be complex due the multivariate character of the functional traits matrix (10 dimensions in our study), and thus the significance of the relationships could not be evaluated. RLQ is a speciesbased method that considers single species response to an environmental gradient (Kleyer et al, 2012) and has the advantage of explicitly incorporating the three types of fundamental ecological data used in trait-environment relationship studies (i.e., a species functional trait matrix, an environmental matrix and a species co-occurrence matrix). These advantages make the approach taken here suitable for evaluating trait-environment relationships (Vallet et al, 2010;Kleyer et al, 2012;Pease et al, 2012;Keck et al, 2014).…”
Section: Discussionmentioning
confidence: 99%
“…En este contexto, la medición de la diversidad funcional es una solución para describir o predecir los cambios en el ambiente, que pudiesen tener un origen antrópico (e. g. Chapin et al 2000, Flynn et al 2009). Existen varias aproximaciones metodológicas para su estudio, pero recientemente, el estudio de los rasgos funcionales (Petchet & Gaston 2006) se ha incrementado notablemente debido al reciente desarrollo de técnicas multivariadas que permiten análisis integrados a nivel comunitario (Kleyer et al 2012). Los rasgos funcionales de las especies son atributos del fenotipo de un individuo asociados con su adecuación biológica y función ecológica (Violle et al 2007), que influencia procesos en el ecosistema (Petchet & Gaston 2006).…”
unclassified
“…In this case, weighted averages of the environmental variable are calculated for each species, resulting in an m-vector containing, what are called, species niche centroids. The vector can then be regressed on traits (Kleyer 2012;Šmilauer and Lepš 2014), analogously to the approach based on CWM.…”
Section: Multiple Traits and Single Environment Variablementioning
confidence: 99%
“…One of the first statistical methods to uncover and describe trait-environment association starts by calculating Community Weighted trait Means (CWM) (Kleyer 2012;Lavorel et al 2008;Peres-Neto et al 2016). With a single trait, the CWM is the single n-vector t * , with…”
Section: Single Trait and Multiple Environment Variablesmentioning
confidence: 99%
See 1 more Smart Citation