[1] Spatial and temporal rainfall variability over watersheds directly impacts the hydrologic response over virtually all watershed scales. Changes in the precipitation regime over decades due to some combination of inherent local variability and climate change may contribute to changes in vegetation, water supply, and, over longer timescales, landscape evolution. Daily, seasonal, and annual precipitation volumes and intensities from the dense network of rain gauges on the Agricultural Research Service, U. S. Department of Agriculture Walnut Gulch Experimental Watershed (WGEW) in southeast Arizona are evaluated for multidecadal trends in amount and intensity over a range of watershed scales (1.5 ha to 149 km 2 ) using observations from 1956 to 2006. Rainfall and runoff volume and rate variability are compared over the same spatial scales over a 40 year period . The major findings of this study are that spatial variability of cumulative precipitation decreases exponentially with time, and, on average, became spatially uniform after 20 years of precipitation accumulation. The spatial variability of high-intensity, runoff-producing precipitation also decreased exponentially, but the variability was still well above the measurement error after 51 years. There were no significant temporal trends in basin scale precipitation. A long-term decrease in runoff from 1966 to 1998 from ephemeral tributaries like the WGEW may be a critical factor in decreasing summer flows in the larger San Pedro due to changes in higher-intensity, runoff-producing rainfall.