Electric vehicles have several disadvantages compared to conventional vehicles, such as their road ability and vehicle weight. To overcome these problems, range-extended engine technology has been developed. A range extender is a generator set that consists of an internal combustion engine coupled with a generator that operates when it is required. A vehicle simulator was deployed to compare the performance of three types of range-extended engines i.e. 1-cylinder 389 cc, 1-cylinder 494 cc and 2-cylinder 988 cc gasoline engines. The best type chosen was afterwards to be coupled with an electric vehicle. The performance data of each internal combustion engine was collected using experiment and simulation data. Two types of driving cycle, the Federal Test Procedure cycle and Artemis Rural Road cycle, were chosen to compare the optimum road ability of the vehicle. The result shows that the 2-cylinder 988 cc range-extended engine has the best performance, with an electrical motor energy consumption decrease of up to 83.26%, fuel consumption increase for the range-extended engine of up to 3.91 L/km, and a road ability increase of up to 232.79% compared to a pure electric vehicle.