Zearalenone (ZEA), α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL) (ZEA´s metabolites) are co/present in cereals, fruits or their products. All three with other compounds, constitute a cocktail-mixture that consumers (and also animals) are exposed and never entirely evaluated, nor
in vitro
nor
in vivo
. Effect of ZEA has been correlated to endocrine disruptor alterations as well as its metabolites (α-ZEL and β-ZEL); however, toxic effects associated to metabolites generated once ingested are unknown and difficult to study. The present study defines the metabolomics profile of all three mycotoxins (ZEA, α-ZEL and β-ZEL) and explores the prediction of their toxic effects proposing an
in silico
workflow by using three programs of predictions: MetaTox, SwissADME and PASS online. Metabolomic profile was also defined and toxic effect evaluated for all metabolite products from Phase I and II reaction (a total of 15 compounds). Results revealed that products describing metabolomics profile were: from O-glucuronidation (1z and 2z for ZEA and 1ab, 2ab and 3ab for ZEA´s metabolites), S-sulfation (3z and 4z for ZEA and 4ab, 5ab and 6ab for ZEA´s metabolites) and hydrolysis (5z and 7ab for ZEA´s metabolites, respectively). Lipinsky´s rule-of-five was followed by all compounds except those coming from O-glucuronidation (HBA>10). Metabolite products had better properties to reach blood brain barrier than initial mycotoxins. According to
Pa
values (probability of activation) order of toxic effects studied was carcinogenicity > nephrotoxic > hepatotoxic > endocrine disruptor > mutagenic (AMES TEST) > genotoxic. Prediction of inhibition, induction and substrate function on different isoforms of Cytochrome P450 (CYP1A1, CYP1A2, CYP2C9 and CYP3A4) varied for each compounds analyzed; similarly, for activation of caspases 3 and 8. Relying to our findings, the metabolomics profile of ZEA, α-ZEL and β-ZEL analyzed by
in silico
programs predicts alteration of systems/pathways/mechanisms that ends up causing several toxic effects, giving an excellent sight and direct studies before starting
in vitro
or
in vivo
assays contributing to 3Rs principle; however, confirmation can be only demonstrated by performing those assays.