A coupled linear layerwise laminate theory and a beam FE are formulated for analyzing delaminated composite beams with piezoactuators and sensors. The model assumes zig-zag fields for the axial displacements and the electric potential and it treats the discontinuities in the displacement fields due to the delaminations as additional degrees of freedom. The formulation naturally includes the excitation of piezoelectric actuators, their interactions with the composite laminate, and the effect of delamination on the predicted sensory voltage. The quasistatic and modal response of laminated composite Gr/ Epoxy beams with active or sensory layers having various delamination sizes is predicted. The numerical results illustrate the strong effect of delamination on the sensor voltage, on through the thickness displacement and on the stress fields. Finally, the effect of delamination on modal frequencies and shapes are predicted and compared with previously obtained experimental results.