Marine protected areas (MPAs) have the potential to enhance the long-term sustainability of coastal resources, and the artisanal fisheries which depend on them. However, recreational fisheries, which are increasing their impacts on coastal resources worldwide, may reduce the benefits that MPAs provide to declining artisanal fisheries. Here we used the Bonifacio Straits Natural Reserve (BSNR) Corsica as a study case to simulate the combined effects on coastal resources of artisanal and recreational fishing efforts. The BSNR ecosystem was modelled using mass-balance modelling of trophic interactions. This model was compared to another built on a non-protected area from the same region. We aggregated fishing fleets into artisanal and recreational categories, and we simulated various combinations of fishing effort over a 20 yr dynamic simulation using Ecosim. We showed that fishing activities have an additional top-down effect on the food web and that they decrease the targeted group's biomass, such as piscivorous species. We found, for some trophic groups, non-trivial patterns of biomass variation through trophic cascades. Our trophic approach revealed that some groups may suffer a biomass decrease when MPAs are set or enforced, due to the combined effect of artisanal and recreational fisheries. Overall, our results illustrate the value of modelling to manage MPAs, as a complementary tool to surveys. Models provide the opportunity to anticipate the potential consequences, at the ecosystem level, of socio-political decisions that aim to sustain coastal resources while managing artisanal and recreational fisheries.