Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract. The BIO-MAÏDO (Bio-physicochemistry of tropical clouds at Maïdo: processes and impacts on secondary organic aerosols formation) campaign was conducted from 13 March to 4 April 2019 on the tropical island of Réunion. The main objective of the project was to improve understanding of cloud impacts on the formation of secondary organic aerosols (SOA) from biogenic volatile organic compound (BVOC) precursors in a tropical environment. Instruments were deployed at five sites: a receptor site, Maïdo Observatory (MO) at 2165 m a.s.l. and four sites along the slope of the Maïdo mountain. Observations include measurements of volatile organic compounds (VOCs) and characterization of the physical, chemical and biological (bacterial diversity and culture-based approaches) properties of aerosols and cloud water. Turbulent parameters of the boundary layer, radiative fluxes and emissions fluxes of BVOCs from the surrounding vegetation were measured to help interpret observed chemical concentrations in the different phases. Dynamical analyses showed two preferred trajectory routes for air masses arriving at MO during the daytime. Both trajectories correspond to return branches of the trade winds associated with upslope thermal breezes, where air masses likely encountered cloud processing. The highest mixing ratios of oxygenated VOCs (OVOCs) were measured above the site located in the endemic forest and the highest contribution of OVOCs to total VOCs at MO. Chemical compositions of particles during daytime showed higher concentrations of oxalic acid, a tracer of cloud processing and photochemical aging, and a more oxidized organic aerosol at MO than at other sites. Approximately 20 % of the dissolved organic compounds were analyzed. Additional analyses by ultra-high-resolution mass spectrometry will explore the complexity of the missing cloud organic matter.
Abstract. The BIO-MAÏDO (Bio-physicochemistry of tropical clouds at Maïdo: processes and impacts on secondary organic aerosols formation) campaign was conducted from 13 March to 4 April 2019 on the tropical island of Réunion. The main objective of the project was to improve understanding of cloud impacts on the formation of secondary organic aerosols (SOA) from biogenic volatile organic compound (BVOC) precursors in a tropical environment. Instruments were deployed at five sites: a receptor site, Maïdo Observatory (MO) at 2165 m a.s.l. and four sites along the slope of the Maïdo mountain. Observations include measurements of volatile organic compounds (VOCs) and characterization of the physical, chemical and biological (bacterial diversity and culture-based approaches) properties of aerosols and cloud water. Turbulent parameters of the boundary layer, radiative fluxes and emissions fluxes of BVOCs from the surrounding vegetation were measured to help interpret observed chemical concentrations in the different phases. Dynamical analyses showed two preferred trajectory routes for air masses arriving at MO during the daytime. Both trajectories correspond to return branches of the trade winds associated with upslope thermal breezes, where air masses likely encountered cloud processing. The highest mixing ratios of oxygenated VOCs (OVOCs) were measured above the site located in the endemic forest and the highest contribution of OVOCs to total VOCs at MO. Chemical compositions of particles during daytime showed higher concentrations of oxalic acid, a tracer of cloud processing and photochemical aging, and a more oxidized organic aerosol at MO than at other sites. Approximately 20 % of the dissolved organic compounds were analyzed. Additional analyses by ultra-high-resolution mass spectrometry will explore the complexity of the missing cloud organic matter.
Abstract. Formic and acetic acids are major organic species in cloud water and affect precipitation acidity. In atmospheric models, their losses are limited to chemical oxidation in the gas and aqueous phases and deposition processes. Previous lab studies suggest that these acids can be efficiently biodegraded in water by atmospherically relevant bacteria. However, the importance of biodegradation as a loss process in the atmospheric multiphase system has not been fully assessed. We implemented biodegradation as a sink of formic and acetic acids in a detailed atmospheric multiphase chemistry model. In our model, biodegradation is considered in 0.1 % of cloud droplets according to atmospheric bacteria concentrations of 0.1 cm−3. We predict that up to 20 ppt h−1 formic acid and 5 ppt h−1 acetic acid are biodegraded. This translates into a concentration change of 20 % and 3 % in addition to that caused by chemical losses. Our sensitivity studies suggest that acetic acid is most efficiently biodegraded at pH > 5, whereas biodegradation is least efficient for formic acid under such conditions. This trend can be explained by the fact that formic acid partitions more efficiently into the aqueous phase due to its higher Henry's law constant (KH,eff(HCOOH)=2×105 M atm−1 vs. KH,eff(CH3COOH)=3×104 M atm−1 at pH = 5). Therefore, under such conditions, formic acid evaporates less efficiently from bacteria-free droplets, resulting in less formic acid in the gas phase for dissolution bacteria-containing droplets to replenish biodegraded acid. Our analysis demonstrates that previous estimates of the importance of atmospheric biodegradation were often biased high as they did not correctly account for such uptake limitation in bacteria-containing droplets. The results suggest that, under specific conditions, biological processes can significantly affect atmospheric composition and concentrations in particular volatile, moderately soluble organics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.