This study investigates the implementation of passive design strategies to improve the thermal environment in the extremely hot climates of Brazil, Portugal, and Turkey. Given the rising cooling demands due to climate change, optimizing energy efficiency in buildings is essential. Using the Trace 3D Plus v6.00.106 software, typical residential buildings for each country were simulated to assess various passive solutions, such as building orientation, wall and roof modifications, glazing optimization options, window-to-wall ratio (WTWR) reduction, shading, and natural ventilation. The findings highlight that Brazil experienced the higher discomfort temperatures compared to Mediterranean climates, with indoor air temperatures exceeding 28 °C all year round and remaining between 34 °C and 37 °C for nearly 40% of the time. Building orientation had a minimal impact near the equator, while Mediterranean climates benefited from an up to 10% variation in energy demand. Thermal insulation combined with white exterior paint resulted in Şanlıurfa experiencing annual energy savings of up to 26%. Optimal roof solutions yielded a 19% demand reduction in Évora, while WTWR reduction and double-colored glazing achieved up to a 35% reduction in Évora and 19% in other regions. Combined strategies achieved energy demand reductions of 44% for Évora, 40% for Şanlıurfa, and 32% for Teresina. The study emphasizes the need for integrated, climate-specific passive solutions, showing their potential to enhance both energy efficiency and the thermal environment in residential buildings across diverse hot climates.