Accurately interpreting past climate variability, especially distinguishing between forced and unforced changes, is challenging. Proxy data confirm the occurrence of large volcanic eruptions, but linking temperature patterns to specific events or origins is elusive. We present a method combining historical climate records with a machine learning model trained on climate simulations of various volcanic magnitudes and locations. This approach identifies volcanic events based solely on post-eruption temperature patterns. Validations with historical simulations and reanalysis products confirm the identification of significant volcanic events. Explainable artificial intelligence methods point to specific fingerprints in the temperature record that reveal key regions for classification and point to possible physical mechanisms behind climate disruption for major events. We detect unexpected climatic effects from smaller events and identify a northern extratropical footprint for the unidentified 1809 event. This provides an additional line of evidence for past volcanoes and refines our understanding of volcanic impacts on climate.