The MARTINI force field is one of the most used coarse-grained models for biomolecular simulations. Many limitations of the model including the protein−protein overaggregation have been improved in its latest version, MARTINI-3. In this study, we investigate the efficacy of the MARTINI-3 parameters for capturing the interactions of peripheral proteins with model plasma membranes. Particularly, we consider two classes of proteins, namely, annexin and epsin, which are known to generate negative and positive membrane curvatures, respectively. We find that current MARTINI-3 parameters are not able to correctly describe the protein−membrane interface and the protein-induced membrane curvatures for any of these proteins. The problem arises due to the lack of proper hydrophobic interactions between the protein residues and lipid tails. Making systematic adjustments, we show that a combination of reduction in the protein−water interactions and enhancement of protein−lipid hydrophobic interactions is essential for accurate prediction of the interfacial structure including the protein-induced membrane curvature. Next, we apply our model to a couple of other peripheral proteins, namely, Snf7, a core component of the ESCRT-III complex, and the PH domain of evectin-2. We find that our model captures the protein−membrane interfacial structure much more accurately than the MARTINI-3 model for all of the peripheral proteins considered in this study. However, the strategy described in this study may not be suitable for oligomeric transmembrane proteins where protein−protein hydrophobic interactions should be increased instead of protein−lipid hydrophobic interactions.