Water scarcity is a major concern for sunflower production in the semi-arid and arid regions of the world. Potassium (K) application has been found effective to alleviate the influence of drought stress; however, the impact of drought stress on seed quality of sunflower has not been reported frequently. Therefore, a field experiment was performed to determine the optimum K requirement for mitigating the adverse effects of water stress and improving growth and seed quality of spring-planted sunflower. Sunflower plants were exposed to water stress at different growth stages, i.e., Io = no stress (normal irrigation), I1 = pre-anthesisi stress (irrigation skipped at pre-anthesis stage), I2 = anthesis stress (irrigation skipped at anthesis stage) and I3 = post-anthesis stress (irrigation skipped at post-anthesis stage). Potassium was applied at four different rates, i.e., Ko = 0, K1 = 50, K2 = 100 and K3 = 150 kg ha-1. The results revealed that water stress at pre- and post-anthesis stages significantly reduced plant height, head diameter, number of achenes, oleic acid contents, and phosphorus (P) uptake. However, pre-anthesis stress improved linoleic acid contents. Treatment IoK3 (stress-free with 150 kg ha-1 K) was optimum combination for 1000-achene weight, biological and achene yields, oil contents, protein contents, and N and P uptake. Results indicated that a higher amount of K and irrigation resulted in higher yield, whereas yield and yield components decreased with early-stage water stress. Nevertheless, potassium application lowered the impacts of waters stress compared to no application. Keeping in view these results, it is recommended that sunflower must be supplied 150 kg ha-1 K in arid and semi-arid regions to achieve higher yield and better seed quality.