2020
DOI: 10.1101/2020.03.13.984542
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Assessing the perceived reverberation in different rooms for a set of musical instrument sounds

Abstract: Previous research has shown that the perceived reverberation in a room, or reverberance, depends on the sound source that is being listened to. In a study by J. Acoust. Soc. Am. 141(4), EL381-EL387], reverberance estimates obtained from an auditory model for 23 musical instrument sounds in 8 rooms supported this sound-source dependency. As a follow-up to that study, a listening experiment with 24 participants was conducted using a subset of the original sounds with the purpose of mapping each test sound onto … Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 10 publications
0
1
0
Order By: Relevance
“…Central processor type # Repr. Peripheral stage based on A. Template-based optimal detector (Dau et al, 1997) 3 Dau et al (1997) B. Autocorrelator-based pitch analyzer (Meddis & O'Mard, 1997) 1 Meddis & Hewitt (1991) C. Discriminability analyzer (Fritz et al, 2007) 2 Glasberg & Moore (2002) D. Envelope analyzer (Jørgensen & Dau, 2011) 1 a Ewert & Dau (2000) E. Room Acoustic Analyzer (van Dorp et al, 2013;Osses et al, 2017aOsses et al, , 2020a 1 Breebaart et al (2001a) F. Envelope analyzer (Bianchi et al, 2019) 1 Zilany et al (2009Zilany et al ( , 2014) G. RMS difference detector (Osses et al, 2019b;Verhulst et al, 2018b) 3 Verhulst et al (2018a) H. Template-based discriminability detector (Maxwell et al, 2020) 2 Zilany et al (2009Zilany et al ( , 2014 a Processor D processes "individual" speech samples in noise (i.e., one test interval), but the processor also needs to have access to the internal representation of the noise alone in order to generate its output metric.…”
Section: Introductionmentioning
confidence: 99%
“…Central processor type # Repr. Peripheral stage based on A. Template-based optimal detector (Dau et al, 1997) 3 Dau et al (1997) B. Autocorrelator-based pitch analyzer (Meddis & O'Mard, 1997) 1 Meddis & Hewitt (1991) C. Discriminability analyzer (Fritz et al, 2007) 2 Glasberg & Moore (2002) D. Envelope analyzer (Jørgensen & Dau, 2011) 1 a Ewert & Dau (2000) E. Room Acoustic Analyzer (van Dorp et al, 2013;Osses et al, 2017aOsses et al, , 2020a 1 Breebaart et al (2001a) F. Envelope analyzer (Bianchi et al, 2019) 1 Zilany et al (2009Zilany et al ( , 2014) G. RMS difference detector (Osses et al, 2019b;Verhulst et al, 2018b) 3 Verhulst et al (2018a) H. Template-based discriminability detector (Maxwell et al, 2020) 2 Zilany et al (2009Zilany et al ( , 2014 a Processor D processes "individual" speech samples in noise (i.e., one test interval), but the processor also needs to have access to the internal representation of the noise alone in order to generate its output metric.…”
Section: Introductionmentioning
confidence: 99%