Abstract. Glacial Lake Outburst Floods (GLOFs) are widely recognized as one of the most devastating natural hazards in the Himalaya, which may catastrophic consequences including substantial loss of lives. To effectively mitigate these risks and enhance regional resilience, it is imperative to conduct an objective and holistic assessment of GLOFs hazards and their potential impacts of GLOFs over a large spatial scale. However, this is challenged by the limited availability of data and the inaccessibility to most of the glacial lakes in high-altitude areas. The data challenge is exacerbated when dealing with multiple lakes across an expansive spatial area. This study aims to exploit remote sensing techniques, well-established Bayesian regression models for estimating glacial lake conditions, cutting-edge flood modelling technology, and open data from various sources to innovate a framework for assessing the national exposure and impact of GLOFs. In the innovative framework, multi-temporal imagery is utilized with a Random Forest model to extract glacial lake water surfaces. Bayesian models, derived from previous research, are employed to estimate a plausible range of glacial lake water volumes and associated GLOF peak discharges, while accounting for the uncertainty stemming from the limited size of available data and outliers within the data. A significant amount of GLOF scenarios is subsequently generated based on this estimated plausible range of peak discharges. A GPU-based hydrodynamic model is then adopted to simulate the resulting flood hydrodynamics in different GLOF scenarios. Necessary socio-economic information is collected and processed from multiple sources including OpenStreetMap, Google Earth, local archives, and global data products to support exposure analysis. Established depth-damage curves are used to assess the GLOF damage extents to different exposures. The evaluation framework is applied to 21 glacial lakes identified potentially dangerous in the Nepal Himalaya. The results indicate that Tsho Rolpa Lake, Lower Barun Lake and Thulagi Lake bear the most serious impacts of GLOFs on buildings and roads, and influence existing hydropower facilities, while Lower Barun Lake, Tsho Rolpa Lake and Lumding Lake will experience the most impacts of GLOFs on agriculture areas. Four anonymous lakes (located at 85°37′51″ E, 28°09′44″ N; 87°44′59″ E, 27°48′57″ N; 87°56′05″ N, 27°47′26″ E; 86°55′41″ E, 27°51′00″ N) have the potential to impact more than 100 buildings, and the first three lakes may even submerge existing hydropower facilities.