Mass spectrometry imaging (MSI) is a powerful analytical method for the simultaneous analysis of hundreds of compounds within a biological sample. Despite the broad applicability of this technique, there is a critical need for advancements in methods for small molecule detection. Some molecular classes of small molecules are more difficult than others to ionize, e.g., neurotransmitters (NTs). The chemical structure of NTs (i.e., primary, secondary, and tertiary amines) affects ionization and has been a noted difficulty in the literature. In order to achieve detection of NTs using MSI, strategies must focus on either changing the chemistry of target molecules to aid in detection or focus on new methods of ionization. Additionally, even with new strategies, the issues of delocalization, chemical background noise, and ability to achieve high throughput (HTP) must be considered. This chapter will explore previous and up-and-coming techniques for maximizing the detection of NTs.