Mild cognitive impairment (MCI) is a prodromal stage in aging to possible progression to Alzheimer’s disease and related dementia (ADRD), where co-occurrence of major depressive disorder (MDD) accelerates the progression. Metabolic and mitochondrial abnormalities in ADRD and other neurodegenerative disorders have been widely suggested, while possible mitochondrial dysfunction has been associated with etiopathology of both MCI and MDD. Hence, investigation of mitochondrial markers in MCI, MDD, and presence of both conditions is warranted. In total, 332 older adult participants were included: 168 with MCI, 108 with MCI plus remitted MDD (rMDD), and 56 with rMDD but without MCI. We measured plasma circulating mitochondrial DNA (ccf-mtDNA), lactate, and extracted nuclear mitochondrial encoded (NMt) single-nucleotide variants (SNVs) (
n
= 312). Non-parametric statistical tests on ccf-mtDNA and lactate levels were performed on the diagnosis, clinical and cardiometabolic variables. Binary sequence kernel association test (SKAT-O) and burden test were performed on NMt-SNV, adjusted for age, race, gender, type II diabetes, and APOE genotype. Lower level of lactate was observed in MCI (KW
χ
2
= 14.8,
P
= 0.0024), more specifically, significant differences of lower plasma lactate between MCI only and rMDD, but not between MCI+rMDD and MCI were found, suggesting potential roles in MCI driving lactate lower levels. While higher levels of ccf-mtDNA were observed in APOE-ε4 carrier (
χ
2
= 5.04,
P
= 0.05). This relationship was present only in MCI (
P
= 0.043) and MCI+rMDD groups (
P
= 0.023). No significant nuclear-encoded mitochondrial gene associations were observed with MCI or MDD. The results suggest decreased level of plasma lactate in individuals with MCI and MCI+rMDD, with inverse correlation with ccf-mtDNA, in addition to effect of APOE-ε4 in further increasing ccf-mtDNA specifically in participants with cognitive impairment. These findings contribute to a deeper understanding of the mitochondrial markers in MCI and MDD, warranting further research to explore the precise roles of mitochondrial abnormalities in the development and progression of MCI.