“…In multiphase structures, the α B SIT/DIT at temperatures higher than room temperature have been reported in few studies [2][3][4]19,29], although their effect on the mechanical properties or the differences with respect to the SIT/DIT taking place in fully austenitic structures has not been discussed. Further research would be needed in order to know if the conclusions made with the α and ε transformations could be extrapolated to α B transformations, although some differences are expected, such as: (a) while the martensite transformation can be spontaneous, the bainitic transformation is thermally activated, which may inhibit the SIT/DIT in some extent; (b) while martensite transformation does not lead to any carbon partition, carbon is partitioned from α B after a plate/lath is fully grown, which is expected to increase the SFE [151,152] and the driving force for the transformation [149], inhibiting the SIT/DIT in a higher extent as the transformation progresses [153]; (c) bainitic ferrite may not be as hard as martensite because of their different carbon contents, hence, the α B TRIP effect may not lead to such a pronounced strengthening as the α TRIP.…”