2017
DOI: 10.1016/j.ecolind.2017.04.033
|View full text |Cite
|
Sign up to set email alerts
|

Assessing the surface water status in Pannonian ecoregion by the water quality index model

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

1
44
0
3

Year Published

2018
2018
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 47 publications
(48 citation statements)
references
References 18 publications
1
44
0
3
Order By: Relevance
“…In addition, the use of multivariate approaches and water quality indices, such as the Physicochemical Driver Assessment Index (PAI), allows for the interpretation of complex data sets in order to better understand the quality and ecological status of a studied ecosystem [3]. Multivariate analysis enables the discovery of possible drivers that may be influencing water quality and easily identifies and interprets water trends [49,50]. Simultaneously, water quality indices ascribe a unitless qualitative value to an aggregate set of measured variables and is based on a set of scientifically determined criteria [50].…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…In addition, the use of multivariate approaches and water quality indices, such as the Physicochemical Driver Assessment Index (PAI), allows for the interpretation of complex data sets in order to better understand the quality and ecological status of a studied ecosystem [3]. Multivariate analysis enables the discovery of possible drivers that may be influencing water quality and easily identifies and interprets water trends [49,50]. Simultaneously, water quality indices ascribe a unitless qualitative value to an aggregate set of measured variables and is based on a set of scientifically determined criteria [50].…”
mentioning
confidence: 99%
“…Multivariate analysis enables the discovery of possible drivers that may be influencing water quality and easily identifies and interprets water trends [49,50]. Simultaneously, water quality indices ascribe a unitless qualitative value to an aggregate set of measured variables and is based on a set of scientifically determined criteria [50]. The PAI is a water quality index developed for South African riverine ecosystems in order to determine the state of the physical and chemical water quality for a resource unit or a specific site [51][52][53].In riverine systems associated with floodplains, increased water usage for irrigation reduces the total water supply and groundwater recharge further downstream.…”
mentioning
confidence: 99%
“…Natural water (surface water and groundwater) quality in an area is a function of physical, chemical, biological, and radiological characteristics of water [7] that are greatly influenced by geological formations, climate, and topography [3] [20]. In addition, human activities such as industrialization, agriculture, mining, and urbanization produce effluents affect natural water quality [3] [4] [11] [21] [22] [23]. Normally, natural water contamination occurs gradually with little impact in the initial period of deterioration, but if it is not controlled at the right time, this water may not be suitable for any purpose for a long time [3] [6] [24].…”
Section: Introductionmentioning
confidence: 99%
“…Bu yüzden ülkemizde ve küresel çapta çok sayıda çalışma yapılmıştır. Bu çalışmaların bazıları veri toplayarak, deneysel şekilde ve zaman gerektirirken (Gedik ve arkadaşları [1], Kalyoncu ve diğerleri [2], Taş [3], Gültekin ve diğerleri [4], İleri ve arkadaşları [5], Cebe ve Barlas [6] ) , bazıları teorik ve pratik (Yenilmez ve Aksoy [7], Tomas ve diğerleri [8], Zhang ve arkadaşları [9], Tekşen Ercan ve Anagün [10]) çalışmalardır. Deneysel çalışmalardan olan Gedik ve arkadaşları [1] Doğu Karadeniz Bölgesi'ndeki Rize ilinde bulunan Fırtına Deresi'nin su kalitesi özelliklerini belirleyip önceki çalışmalarla karşılaştırmışlardır.…”
Section: Introductionunclassified
“…Çalışma sonucunda model tahminleri ve gözlenen değerler arasında kabul edilebilir bir benzerlik bulmuşlardır. Tomas ve arkadaşları [8] Hırvatistan'ın Pannon bölgesindeki su kalitesinin değerlendirilmesi için çok değişkenli doğrusal regresyon modeli ve parçalı doğrusal regresyon modeli olmak üzere 6 değişkenli iki model oluşturmuşlardır. Çalışılan bölge için parçalı değişkenli doğrusal regresyon modelinin daha uygun olduğu sonucuna varmışlardır.…”
Section: Introductionunclassified