The documentation of historical remains and cultural heritage is of great importance to preserve historical knowledge. Many studies use low-resolution airplane-based laser scanning and manual interpretation for this purpose. In this study, a concept to automatically detect terrain anomalies in a historical conflict landscape using high-resolution UAV-LiDAR data was developed. We applied different ground filter algorithms and included a spline-based approximation step in order to improve the removal of low vegetation. Due to the absence of comprehensive labeled training data, a one-class support vector machine algorithm was used in an unsupervised manner in order to automatically detect the terrain anomalies. We applied our approach in a study site with different densities of low vegetation. The morphological ground filter was the most suitable when dense near-ground vegetation is present. However, with the use of the spline-based processing step, all filters used could be significantly improved in terms of the F1-score of the classification results. It increased by up to 42 percentage points in the area with dense low vegetation and by up to 14 percentage points in the area with sparse low vegetation. The completeness (recall) reached maximum values of 0.8 and 1.0, respectively, when taking into account the results leading to the highest F1score for each filter. Therefore, our concept can support on-site field prospection.